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A contact of a falling spherical particle with another fixed one in an unbounded viscous fluid is theoretically
investigated based on a model of adding the contact interaction to the gravitational and hydrodynamic forces.
The hydrodynamic interaction between the two particles is dealt with using an extended successive reflection
method, with which the complete solution to the exterior velocity field around the two-particle system is
constructed on the basis of the general expression given by Lamb, and then the hydrodynamic forces and
torques on the two particles are obtained by integrating the fluid stress over each particle surface. The me-
chanical contact force is characterized by the standard friction theory with a criterion responsible for the
transition from pure rolling to rolling with slip. Resorting to the dynamical equations of motion including the
gravitational, hydrodynamic, and contact forces, the settling motion of a spherical particle in the vicinity of
another fixed one is depicted using the fourth-order Runge-Kutta-Fehlberg method. Compared with the experi-
mental results available in the literature, the theoretical prediction confirms two moving patterns at contact:
pure rolling and rolling with slip, analyzes the dependence of the transition from one to another on the static
friction coefficient and the contact separation distance between the particle surfaces, and accounts for a
limitation of the quasisteady description of two interacting noncolloidal particles.
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I. INTRODUCTION

Recent investigations �1–8� have revealed that the macro-
scopic structure and transport properties of suspensions, such
as the effective viscosity or the sedimentation velocity, de-
pend on the hydrodynamic and contact interactions between
the suspension particles. According to the Jeffrey-Onishi
theory �9–11�, when a smooth noncolloidal particle ap-
proaches another, the viscous fluid gives rise to a so-called
lubrication force between the close particle surfaces which
increasingly slows down the rate of approach, thus preclud-
ing the particle-particle contact. And, in low-Reynolds-
number flows, the behavior of a moving particle would ex-
hibit a hydrodynamic reversibility as long as the boundary
conditions display the corresponding symmetry. However,
experimental evidence has shown that the real particles have
microscopic surface roughness elements and the particle-
particle contact does occur. And such contact produces a
nonhydrodynamic contact force at a minimum particle gap
�6�, which corresponds to the surface roughness scale on the
order of 10−3 to 10−2 particle radii �12�. This contact force
affects significantly the dynamical behaviors of moving par-
ticles, and leads to a symmetry breaking phenomenon. Fur-
thermore, the bulk effect of the contact interaction makes a
non-negligible contribution to the macroscopic properties of
suspensions �13–18�. The categories of the contact are ex-
plored by several authors, and until now, two typical models
have been proposed for the contact patterns. One is a simple
stick-rotate model �3,19,20� in which both spherical particles
are locked together so that the two particles translate and
rotate as a rigid body. The other is a roll-slip model �3,6,8� in
which one spherical particle rolls around the surface of the
other with slip occurring if the maximum tangential force
allowed by the mechanical friction is exceeded.

In the theoretical investigation of hydrodynamic interac-
tions between two submerged bodies with contact at low

Reynolds number, the standard friction theory has been
adopted to describe the mechanical contact force �21,22�,
and several theoretical approaches for determining the hy-
drodynamic interaction between the two bodies have been
developed. These include usages of reflections �23�, bispheri-
cal coordinates �24,25�, tangent-sphere coordinates �19�, col-
location methods �26�, twin multipole expansions �10�,
asymptotic methods �27,28�, and the extended successive re-
flections �29,30�. Although each of the methods mentioned
above has individual advantages, the extended successive re-
flection method is of theoretical importance. The recently
developed approach is an extension of reflections in which
every harmonic corrective function being also a solution for
the Stokes equations is established in succession to satisfy
only the impenetrable boundary condition on each body sur-
face just like images in an ideal flow �29�. And the velocity
expression composed of these functions in series form is fi-
nally required to satisfy the no-slip boundary condition on
each body surface. In this manner, the items in all the series
expressions decay by the order O�1/s2�, where s is the dis-
tance between the centers of two bodies, faster than those
following from the pure reflections. This method is accurate
and produces power series in iterative form of given particle
radii and separation distance that are suitable for numerical
computation.

The objective of this investigation is an attempt to predict
combined hydrodynamic and contact interactions between
two settling noncolloidal spherical particles associated with
contact at low Reynolds number and describe their quasi-
steady behaviors by means of the extended successive reflec-
tions. To do this, the general solution for the flow field out-
side a particle would be expressed in harmonics and
biharmonics from Lamb’s representation �31� for Stokes’
flow. By using two sets of transformations of harmonics and
biharmonics between two coordinates �30� and the extended
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successive reflections, the complete solution to the velocity
field around the two particles is constructed. It is then em-
ployed to predict the hydrodynamic forces and torques on
these particles by integrating the fluid stress over each par-
ticle surface even as the minimum dimensionless separation
�m �6� between the particle surfaces is down to 10−4. Dy-
namical equations of motion, taking account of the contact
force, are adopted to describe the quasisteady motion of the
two-particle system, and it may be easily solved by means of
the fourth-order Runge-Kutta-Fehlberg method �32�. As an
example, such a system of a particle settling around another
fixed one is described. Meanwhile, the theoretical results are
compared to available experimental ones in recent literature
�6,8�. In comparison between the theoretical and correspond-
ing experimental results, the limitation of the quasisteady
description of two interacting noncolloidal particles is pre-
sented.

II. THEORETICAL PREDICTIONS

A. Formulation of the problem

Consider two spherical particles of radii R1 and R2 with
densities �1 and �2, respectively, released in an unbounded
fluid of density � and viscosity � in a gravitational accelera-
tion environment g. The two particles are considered to make
planar motion in the vertical y-z symmetric plane in order to
simplify the analysis, as shown in Fig. 1. Particle i �i=1,2�,
with center oi located at �0,yi ,zi� and driven by the gravity,
settles down in the fluid with a translational velocity ui and
an angular velocity �i with its rotation axis perpendicular to
the y-z plane.

On the assumption that the fluid is incompressible and the
flow due to tardy particle motion is regarded as a creeping
one, the flow is described by its velocity u and hydrody-
namic pressure p, satisfying the Stokes equations

� · u = 0, �p − ��2u = 0, �1�

with the no-slip boundary conditions on particle surfaces and
the fluid velocity vanishing at infinity,

u = ui + �ie1 � ri on ri = Ri �i = 1,2� , �2a�

u → 0 as r → � , �2b�

where e�� is the unit vector along the positive direction of the
corresponding axis in numerical order.

B. Analytical solution for a two-particle system

Two sets of auxiliary coordinates, �x ,y� ,z�� and
�x ,Y� ,Z��, fixed at two particle centers are introduced for
convenience �see Fig. 1�, which can be turned into spherical
ones by

�x = r1 sin �1 sin 	 ,

y� = r1 sin �1 cos 	 ,

z� = r1 cos �1,

and �x = r2 sin �2 sin 	 ,

Y� = r2 sin �2 cos 	 ,

Z� = r2 cos �2.

�3�

From the general solution given by Lamb, the velocity
field u outside an isolated spherical particle translating and
rotating in a Stokes flow can be written in the �r1 ,�1 ,	�
coordinates as

u = �
m=0

1

B3−m��P1
m cos m	

r1
2 � −

A3−mr1
2

6�
��P1

m cos m	

r1
2 �

+
2A3−me3−m�

3�r1
+ �− 1�m+1Cem+2� �P1

m cos m	

r1
2 � , �4a�

and the hydrodynamic pressure due to the same flow as

p = �
m=0

1
A3−mP1

m cos m	

r1
2 − �gz + p0, �4b�

where A, B, and C are constants to be determined by the
boundary conditions, p0 is a reference pressure, and P1

m de-
notes the associated Legendre function P1

m�cos �1�. Here
items including A and B involve the translation of the par-
ticle and those including factor C represent its rotation.

To deal with the problem on the hydrodynamic interaction
between two submerged particles in a low-Reynolds-number
flow, the standard reflection method requires biharmonics as
corrective functions successively to satisfy the no-slip
boundary condition on each particle surface. But burden-
some work in mathematical deduction makes it extremely
difficult to derive a complete solution. Consequently, the ex-
tended successive reflection approach is taken into account.
Such a method regards harmonics as correctors in turn to
satisfy only the impenetrable conditions on each particle sur-
face. A heuristic proof is presented here to explain why har-
monics are chosen as corrective functions for boundary de-
mands:

If �p − ��2u0 = 0 and �2u�i�� = 0 �i = 1,2 . . . � ,

�5a�

Then �p − ��2�u0 + �
i

u�i�� � = 0 still holds, �5b�

where every harmonic u�i�� as a corrective function satisfies
only the impenetrable boundary condition on the correspond-
ing particle surface, as depicted in Fig. 2. And the velocity
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FIG. 1. Configuration of two spherical particles and the corre-
sponding coordinates.
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field composed of these functions in series form is finally
required to satisfy the no-slip boundary condition on each
body surface.

In terms of expressions given by Ref. �30� with a little
correction and those in the Appendix, the complete solution
to the velocity field u of the ambient fluid around the two
particles is constructed below:

u = �
i=1

2

�
m=0

1

Bi,3−mhim� −
Ai,3−m

6�
him�

+
2Ai,3−mhim�

3�
+ �− 1�m+1Cihim� , �6�

where boldfaces h� are elementary velocity disturbance vec-
tors in relation to the two-particle system. One may refer to
Ref. �30� for further details. Here A, B, and C are constants
just like those mentioned above but for the two particles.
Substituting Eq. �6� into boundary conditions �2a� leads, with
manipulation, to ten algebraic equations of Ai,j+1, Bi,j+1, and
Ci �i , j=1,2� as

Bi,3−m =
Ai,3−mRi

2

2�
−

ui,3−m� Ri
3

2
for i = 1,2 and m = 0,1,

�7a�

Bi,3−m� 1

Ri
3 +

3

2�
k=0

�


i,m,1
�2k� � +

Ai,3−m

�
� 1

2Ri
−

1

4�
k=0

�

�i,m,1
�2k� �

+
3B3−i,3−m

2 �
k=0

�


3−i,m,1
�2k+1�

−
A3−i,3−m

�
�1

4�
k=0

�

�3−i,m,1
�2k+1� − �− 1�m2Cm,1,1Ri

2

5
�

= ui,3−m� for i = 1,2 and m = 0,1, �7b�

− 5�Bi,2�
k=0

�


i,1,2
�2k� + B3−i,2�

k=0

�


3−i,1,2
�2k+1� �

+
5

6�
�Ai,2�

k=0

�

�i,1,2
�2k� + A3−i,2�

k=0

�

�3−i,1,2
�2k+1� �

+
Ci

Ri
3 + �− 1�i4A3−i,2C1,1,2Ri

2

7�
= �i for i = 1,2,

�7c�

where ui,j+1� �i , j=1,2� denotes the �j+1�th velocity compo-
nent of particle i in the �x ,y� ,z�� coordinates. Here values of
Ai,j+1, Bi,j+1, and Ci �i , j=1,2� are simultaneous solutions of
the above ten algebraic equations.

C. Hydrodynamic forces and torques on individual particles

In order to describe a quasisteady behavior of two moving
spherical particles at low Reynolds number, it is important to
predict the hydrodynamic forces and torques on individual
particles. The force Fi and torque Ti exerted by the fluid on
particle i due to its motion and interaction with the other are
given by

Fi = 	
�i

� • nds and Tie1 = 	
�i

r � � • nds

for i = 1,2, �8�

where �i �i=1,2� denotes the surface of particle i, and n is
the outward normal to the surface. Here � •n is the radial
component of the fluid stress tensor �. Integrals in Eq. �8�
result in, after some manipulation, the following expressions
in closed form of the hydrodynamic interaction components
in the �x ,y� ,z�� coordinates:

Fi,2� =
4�Ri

3

3 
− �g sin  + Ai,2�− 3

Ri
3 +

2

3Ri
2�

k=0

�

�Ri
2�i,2

�2k� − 4�i,0
�2k�� +

1

2�
k=0

�

�i,1,2
�2k� �

+ A3−i,2�5C1,1,1

3
+

2

3Ri
2�

k=0

�

�Ri
2�3−i,2

�2k+1� − 4�3−i,0
�2k+1�� +

1

2�
k=0

�

�3−i,1,2
�2k+1� � +

�Ci

Ri
2 �

k=0

�

�4�i,0,0
�2k� − Ri

2��i,0,2
�2k� + 3�i,1,2

�2k� ��

+
�C3−i

Ri
2 �

k=0

�

�4�3−i,0,0
�2k+1� − Ri

2��3−i,0,2
�2k+1� + 3�3−i,1,2

�2k+1� �� , �9a�
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FIG. 2. Schematic description of the extended successive
reflections.
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Fi,3� =
4�Ri

3

3 
�g cos  + Ai,3�− 3

Ri
3 −

4

3Ri
2�

k=0

�

�Ri
2�i,2

�2k� + 2�i,0
�2k�� +

1

3Ri
2�

k=0

�

�Ri
2�i,0,2

�2k� + 2�i,0,0
�2k� ��

+ A3−i,3�−
5C0,1,1

3
−

4

3Ri
2�

k=0

�

�Ri
2�3−i,2

�2k+1� + 2�3−i,0
�2k+1�� +

1

3Ri
2�

k=0

�

�Ri
2�3−i,0,2

�2k+1� + 2�3−i,0,0
�2k+1� �� , �9b�

Ti = 4�Ri
3
− �Ci� 2

Ri
3 + �

k=0

�

��i,0,1
�2k� + �i,1,1

�2k� �� − �C3−i�
k=0

�

��3−i,0,1
�2k+1� + �3−i,1,1

�2k+1� �

+
2

3
�Ai,2�

k=0

�

�i,1
�2k� + A3−i,2�

k=0

�

�3−i,1
�2k+1�� +

1

6
�Ai,2�

k=0

�

�i,1,1
�2k� + A3−i,2�

k=0

�

�3−i,1,1
�2k+1� � , �9c�

for i=1,2. Here the corresponding notations are defined in a
manner similar to the foregoing ones. One easily finds that
letting s→�, for these sixteen algebraic equations in
�7a�–�7c� and �9a�–�9c�, all coupling terms related to s van-
ish, and thus in the �x ,y� ,z�� coordinates

Fi,2� = − 6��Riui,2� −
4�

3
sin �gRi

3, �10a�

Fi,3� = − 6��Riui,3� +
4�

3
cos �gRi

3, �10b�

Ti = − 8���iRi
3, �10c�

for i=1,2. Equations �10a�–�10c� are the well-known expres-
sions for the hydrodynamic forces and torques on two iso-
lated quasisteadily moving spheres at a low Reynolds num-
ber in a gravitational environment. Seen from Eqs. �9a�–�9c�,
the tangential force expressions include such flow parameters
related to the rotational effect and those with the translational
effect appear also in the torque expressions as well. This
implies that translation would be coupled with rotation in a
two-particle system, and energy may change from a transla-
tional degree of freedom into that of a rotational one and vice
versa. The phenomenon cannot be expected in a potential-
flow case if the solid particles are spherical.

D. Dynamical equations of motion

This paper presents complete analytical expressions for
both the exterior velocity around two spherical particles and
the hydrodynamic interaction between them in a quasisteady
situation without consideration of fluid inertia. Apparently,
the hydrodynamic forces and torques acting on these par-
ticles are sufficient to establish dynamical equations of mo-
tion for their behaviors in low-Reynolds-number flows. If a
particle-particle contact is considered in the course of two
gravity-driven particles approaching each other, the dynami-
cal equations governing their motions become

Mi
dui

dt
= Fi + Mig + fi, �11a�

Ji
d�i

dt
= Ti + �i, �11b�

for i=1,2. Here Mi and Ji are the mass and moment of
inertia of particle i, respectively, and fi and �i are the restrain-
ing force and torque exerted by the other particle, which are
equal to zero except when the two particles come into con-
tact. By virtue of these equations including the hydrody-
namic interaction, gravitational force, and contact force, one
may explore quasisteady behaviors of two settling particles
associated with contact.

The contact interactions, fi and �i �i=1,2�, are determined
by the classical friction theory. The motion during touch is
based on an ad hoc assumption that the contact separation
distance between the particle surfaces remains approximately
constant equivalent to the effective thickness of roughness
elements on particle surfaces. Generally, there are two ge-
neric kinds of moving patterns during touch, pure rolling,
and rolling with slip, which are characterized by the ratio of
the tangential to normal forces transmitted from one surface
to another �6�. For a pure rolling, the ratio is less than a
critical value �s, the static friction coefficient, and for a roll-
ing with slip, the ratio becomes a constant �k, called kinetic
friction coefficient. �k is always smaller than �s.

This investigation will discuss a touch case of a particle
�particle 1� moving down along the surface of another fixed
one �particle 2� for simplicity. In this case, the motion during
touch is described in a noninertial frame of reference. A
torque and forces acting on particle 1 are shown schemati-
cally in Fig. 3. Here f1T and f1n are the tangential and normal
components of f1, and fc the centrifugal force due to a cir-
cumferential motion of particle 1. Therefore the dynamical
equations of motion during touch become

M1R1�̇1 = f1T − F1,2� − M1g sin  , �12a�

J1
*�̇1 = T1 − F1,2� R1 − M1g sin R1 �12b�

for a pure rolling, and

M1u̇1,2� = F1,2� + M1g sin  − �kf1n, �12c�
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J1�̇1 = T1 − �kf1nR1 �12d�

for a rolling with slip. Here J1
*=J1+M1R1

2. The normal re-
straining force f1n along the z� direction can be written as

f1n =
4

3
�R1

3��1 − ��g cos  −
M1u1,2�2

R1 + R2 + �mR2
. �13�

Determination of whether sphere 1 during touch would un-
dertake a pure rolling is based on such a criterion that

f1T = F1,2� + M1g sin  + M1R1�T1 − F1,2� R1 − M1g sin R1

J1�
�

� �sf1n �14�

on the premise of rolling without slip before.

III. RESULTS AND DISCUSSION

A. Comparison between theoretical results
and the corresponding experimental ones

Equations �9a�–�9c�, �11a�, �11b�, �12a�–�12d�, and �13�
can be employed to determine combined hydrodynamic and
contact interactions between two settling noncolloidal
spherical particles associated with contact at low Reynolds
number, and predict a quasisteady behavior of a gravity-
driven particle settling around another fixed one in an other-
wise quiescent fluid. To this end, the numerical computation
is the vital resort of solving these algebraic and ordinary
differential equations since their analytical solutions are gen-
erally not available. The ordinary differential equations are
solved using the fourth-order Runge-Kutta-Fehlberg method
of integration, and the time step is adaptive according to an
error tolerance of five significant figures. As each of the kth
terms in the series expressions in Eqs. �9a�–�9c� behaves like
1/s2k, the truncated series in an extreme case at k=150
would make our numerical results accurate up to the 300th
inverse power of s. And the practical calculations are carried
out with an automatic increase in k until the summation of
extra terms produces no significant variation within the pre-
assigned level of accuracy even for a minimum dimension-
less separation �m down to 10−4.

In order to compare the theoretical results with available
experimental ones, let us consider a sedimentation of particle
1 with radius R1=0.3175 cm and density �1=7.8 g/cm3

around the fixed particle 2 with radius R2=0.315 cm in an

unbounded viscous liquid of density �=0.978 g/cm3 and
viscosity �=978 dyn s /cm2, subjected to a gravitational en-
vironment of g=981 cm/s2. Under the balance of the
buoyancy, gravity, and Stokes’ drag, the terminal settling
velocity of particle 1 alone, the Stokes velocity, is
u10�0.1533 cm/s, and the Reynolds number therewith cor-
responds to Re�9.7�10−5. The contact separation distance
is set down to �m=1�10−4. At contact, the friction coeffi-
cient needs to be specified to match an appropriate moving
pattern. The typical coefficients �cf. Ref. �6�� for well-
lubricated metal-nonmetal contacts are given here �s�0.15
for a pure rolling and �k�0.1 for a rolling with slip. The
whole motion during touch is determined by the contact
force: as the ratio of the tangential component of the contact
force to its normal one at the initial contact instant is less
than a critical value �s, the settling particle moves in a pure
rolling pattern; at the instant when the ratio exceeds the limit,
the settling particle will start to roll with slip with the friction
coefficient sharply decreasing to satisfy Amontons’ law. The
computation starts at three initial positions z10=2 cm,
y10=0.035, 0.317, and 0.566 cm, which may evolve three
typical particle-moving patterns.

Figure 4 shows three particle sediment trajectories. The
solid line in the figure implies that particle 1 is released
gently at such a critical initial horizontal position y10cr1
�y10cr1=0.566 cm in the present case� that it just passes by
the fixed one without touch thereafter. This trajectory exhib-
its a symmetry with respect to reflection in the horizontal
plane z=0 due to the reversibility of the Stokes equations.
The dashed line presents a situation in which particle 1 set
free at an initial horizontal position y10=0.317 cm would
touch the fixed one and immediately roll with slip on its
surface until it runs away from it. The dotted line indicates
that particle 1 released motionless at an initial horizontal
position y10=0.035 cm would experience a pure rolling and
subsequent rolling with slip during touch, with a sharp tran-
sition from one to another. The last two plots are asymmetric
with respect to z→−z. As a result, it is difficult to predict the
dynamical behavior of particle 1 although the lower seg-
ments �z�0� of these three curves are almost overlapped. It
is further deduced from the figure that if particle 1 is set free
at a smaller initial horizontal position than the critical one,
y10�y10cr1, then it would touch the fixed particle inevitably,

T1

F1

f1n

f1T

gM1

fc

FIG. 3. Torque and forces on particle 1.
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FIG. 4. Trajectories of the settling particle center around another
fixed one with three initial horizontal positions.
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and its trajectories are asymmetric with respect to reflection
in the horizontal plane z=0. This phenomenon obviously dis-
obeys the prediction of reversibility of the Stokes equations.
The reasonable explanation is that the contact force between
the two particles during touch is responsible for the “sym-
metry breaking.”

In addition, as presented in the figure, the numerical com-
putation verifies the conclusion given by Ekiel-Jeżewska et
al. �6� that there are two intervals of motion during touch:
pure rolling and rolling with slip. The transition from a pure
rolling to a rolling with slip is described by the critical con-
tact angle c defined as a specific angle between the z� and z
axes at which slip occurs. For given friction coefficients and
contact separation distance, the variation of c with the ini-
tial horizontal position is plotted in Fig. 5. It is observed
from Fig. 5 that the critical contact angle c is not fixed but
varies in a small interval of 0.03° with the initial horizontal
position. Every critical contact angle is determined by the
individual initial horizontal position. The phenomenon is due
to the centrifugal effect arising from the circumferential mo-
tion of particle 1 during touch. This implies that as the con-
tact angle of the two particles is less than 14.8°, particle 1
moves in a pure rolling pattern, but as the contact angle falls
into the interval between 14.83° and 90°, it takes the pattern
of rolling with slip. After that, particle 1 will run away from
contact. The critical value of 14.8°, equivalent to c
=0.258 rad, is somewhat larger than that of the experimental
data �6�, c�0.25 rad. Such a discrepancy could originate
from a little difference in �s and �m. Furthermore, by using
the try-and-error method, another critical initial horizontal
position of y10cr2=0.145 cm, equivalent to y10cr2 /R2=0.456,
is determined. When particle 1 is released at an initial hori-
zontal position larger than y10cr2 but less than y10cr1, it would
undertake only a rolling with slip.

Figure 6 shows variation of the rotational angle � of par-
ticle 1 against the vertical position. It is deduced from the
figure that if the particle passes by the fixed one without
contact, then the angular velocity plot of the moving particle
exhibits symmetry with respect to z→−z. This conclusion
can be heuristically explained by the reversibility of the
Stokes equations, i.e., uy�z�=−uy�−z� and uz�z�=uz�−z�, and

the coupling effect of the translation with rotation as well. In
addition, it is seen from the figure that the initial horizontal
position determines the rotational evolution of the settling
particle. The smaller y10 is, the larger the variation of the
rotational angle will be. In the contact case, the contact force
not only dissipates the mechanical energy but also changes a
part of the translational energy into the rotational one so that
the rotational motion is no longer symmetric.

Velocity components of particle 1 against the vertical po-
sition are respectively plotted in Figs. 7 and 8 in order to
compare the theoretical predictions with available experi-
mental results in Ref. �6�. It is noted from Fig. 7 that the
upper-half parts �z�0� of the two prediction curves in the
contact cases are similar to the corresponding experimental
findings with an extreme value nearly up to 4.0
�10−2 cm/s, while their lower-half parts have smaller ve-
locity amplitude peaks than the relevant experimental data.
This is because the theoretical prediction neglects van der
Waals attractions which prevent the escape of the settling
particle from the surface of the fixed one, thus making it
change the direction of motion. Readers can also observe
from Fig. 8 that there are three major discrepancies between
the theoretical predictions and the experimental results. The
experimental data show that the maximum vertical velocity
of the settling particle approaches 0.09 cm/s, less than its
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FIG. 5. The critical contact angle vs the initial horizontal
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Stokes velocity, and its sedimentation velocity at the final
stage decreases gradually to zero instead of maintaining a
constant velocity just like the theoretical prediction. These
differences are mainly due to the wall effect induced by the
experimental container. However, the wall effect will not be
discussed in the present paper. The experimental data still
show that particle 1 driven by the gravity accelerates gently
up to a maximum speed after released, but the Stokes equa-
tions predict the particle almost reaches the terminal velocity
at once. The reason should be that the Stokes equations do
not involve the unsteady effect, and thus the Basset and
added-mass forces are overlooked.

The dependences of the transition from a pure rolling to a
rolling with slip on the static friction coefficient and the con-
tact separation distance are respectively depicted in Figs. 9
and 10. The predictions are made for a given initial position,
z10=2 cm, y10=0.035 cm. Figure 9 shows a plot of c vs �s.
Note from the plot that the critical contact angle is directly
proportional to the static friction coefficient. This illustrates
that the typical values of �s=0.11–0.2 for lubricated metal-
nonmetal contacts do not have a nonlinear influence on the

transition from a pattern to another in the present case. Fig-
ure 10 shows how the transition depends on the contact sepa-
ration distance ��m=1�10−5–1�10−2�. In this case, the in-
crement of the contact gap between the particle surfaces
postpones the transition. This is because an increase in the
surface contact gap would decrease the ratio of f1T to f1n, and
thus delay the translation.

B. Limitation of the quasisteady description

In order to explain the discrepancy in velocity compo-
nents between the theoretical prediction and corresponding
experimental result, let us discuss a quasisteady sedimenta-
tion of an isolated particle 1 at low Reynolds number, which
is governed by the following dynamical equation of motion:

M1z̈ + 6��R1ż + �M1 − Md�g = 0, �15a�

with the initial conditions

z�0� = 2 and ż�0� = 0, �15b�

where Md=4��R1
3 /3 is the fluid mass displaced by particle

1. Integrating Eq. �15a� with respect to time t, the vertical
velocity and displacement expressions of particle 1 can be
derived as

ż = −
2��1 − ��gR1

2

9�
�1 − exp�−

9�t

2�1R1
2�� , �16a�

and

z = −
2��1 − ��gR1

2

9�
�t +

2�1R1
2

9�
exp�−

9�t

2�1R1
2��

+
4��1 − ���1gR1

4

81�2 + 2. �16b�

By letting t→�, Eq. �16a� gives the famous Stokes velocity.
With this terminal settling velocity, particle 1 is in a dynami-
cally balanced state, namely, the net force on the particle
turns to zero. If u10 is chosen as a characteristic velocity, �0
as a time scale, R1 as a length scale, and � u10/R1 is regarded
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FIG. 8. Vertical velocity of the settling particle center vs the
vertical position from experiments �symbols� and theoretical
predictions.
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as a characteristic pressure, then the Navier-Stokes equation
may be written in dimensionless form as follows:

Ns
�u�

�t�
+ Re�u� · ���u� = − ��p� + ��u�, �17�

where Ns is the Stokes number, which is defined as R1
2 / ���0�.

Here physical variables with a prime express the correspond-
ing dimensionless ones. In the present investigation, there
are two time scales for the vanishingly small Reynolds num-
ber flow. One is an interaction time �01 for a particle to move
a reference distance which represents an interaction range,
and �01 takes the form

�01 �
R1

u10
= 2.07 s. �18�

Another indicates a transient time �02 for an isolated particle
from a standstill to 99% of its terminal settling velocity, and
it can be easily derived from Eq. �16a� as

�02 =
4 ln 10�1R1

2

9�
= 8.227 � 10−4 s. �19�

In the interaction situation, Ns��01�=4.87�10−5, so the
Stokes equations may give a better approximation, but in the
transition process of the settling particle, Ns��02�=0.123
�O�1�, the first term on the left side in Eq. �17� representing
the local rate of change of the velocity is not negligible, and
accordingly the unsteady Stokes equations should be em-
ployed to formulate the problem.

IV. CONCLUSIONS

Complete analytical expressions for the hydrodynamic in-
teraction of two solid spheres at low Reynolds number in the
gravitational environment are presented to describe the be-
havior of a noncolloidal spherical particle settling around
another fixed one in a viscous fluid. The contact situation is
discussed resorting to the dynamical equations of motion.
They are based on a plain combination of the hydrodynamic
interaction and the classical solid friction forces.

The theoretical prediction confirms two moving patterns
at contact: pure rolling and rolling with slip. The three typi-
cal behaviors of a settling particle are determined by two
critical initial horizontal positions. As the settling particle is
released at an initial horizontal position larger than y10cr1
�y10cr1 /R1=1.78 for given physical properties and particle
sizes�, it would pass by the fixed particle without touch. In
the situation, its motion exhibits a symmetry with respect to
z→−z. As the settling particle is set free at such an initial
horizontal position larger than y10cr2 �y10cr2 /R1=0.456 in the
present case� but smaller than y10cr1, it would undertake only
a rolling with slip. And as the settling particle is initially put
in a horizontal interval, y10� y10cr2, it would experience a
pure rolling and subsequent rolling with slip during touch.

Such parameters as the static friction coefficient, the con-
tact separation distance, and the initial horizontal position
would influence the transition from a pure rolling to a rolling
with slip. In the present case, the typical values of the static

friction coefficient for lubricated metal-nonmetal contacts
have a linear influence on the transition from a pattern to
another. The transition depends also on the contact separa-
tion distance, i.e., it is retarded with the increment of the
contact gap between the particle surfaces. Despite given
static friction coefficient and contact separation distance, the
critical contact angle c is not fixed but varies in a small
interval due to the circumferential motion of the settling par-
ticle during touch.

The process of a particle settling around another fixed
particle is actually an unsteady one. Accordingly, the un-
steady Stokes equations should be employed to formulate the
problem. For just an interaction situation, the Stokes equa-
tions can give a better approximation, nevertheless.
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APPENDIX: DERIVATION OF VELOCITY FIELDS
DUE TO TWO ROTATING SPHERES

In this Appendix, the fundamental solutions to the Stokes
equations for a two-rotating-sphere system will be dealt with
using the extended successive reflection procedure �see Ref.
�30��.

Let us first consider an initial disturbance h1m,0� due to the
rotational motion of sphere 1 is a harmonic in form, written
in the �r1 ,�1 ,	� coordinates as

h1m,0��1� =
P1

m cos m	em+2�

r1
2 , m = 0 or 1, �A1�

where the superscript �i� means that physical variables are
expressed in the �ri ,�i ,	� coordinates. Here Pk

m denotes the
associated Legendre function Pk

m�cos �1� for convenience.
When a second sphere is released motionless in the fluid

at o2, around the sphere, h1m,0� can be expressed by using a
transformation between �r1 ,�1 ,	� and �r2 ,�2 ,	� as �cf. the
Appendix in Ref. �30��

h1m,0��2� = − em+2� �
k=m

�

�1,m,k
�1� r2

kPk
m cos m	 , �A2�

where �1,m,k
�1� = �−1�−mCm,1,k and Pk

m is the associated Legendre
function Pk

m�cos �2�. From the impenetrable boundary condi-
tion on the surface of sphere 2, a corresponding correction
h1m,1� ,

h1m,1��2� = em+2� �
k=m

�

�1,m,k
�1� R2

2k+1Pk
m cos m	

r2
k+1 , �A3�

should be put into the flow field. Based on another transfor-
mation in the same reference, h1m,1� in the �r1 ,�1 ,	� coordi-
nates takes the form
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h1m,1��1� = − em+2� �
k=m

�

�1,m,k
�2� r1

kPk
m cos m	 , �A4�

where �1,m,k
�2� = �−1�k−m+1�l=m

� R2
2l+1�1,m,l

�1� Cm,l,k. But the added
correction makes an extra contribution to the flow field and
violates the impenetrable condition on sphere 1, and then
another compensating correction should be introduced to
counteract the violation. Continuing the same procedure in
succession leads to an infinite sequence of reflection correc-
tions, and after some algebraic treatment, the velocity field
outside the two spheres in relation to disturbance h1m,0� fi-
nally becomes

h1m� = em+2� �P1
m cos m	

r1
2 + �

k=m

�
R2

2k+1Pk
m cos m	

r2
k+1 �

i=0

�

�1,m,k
�2i+1�

+ �
k=m

�
R1

2k+1Pk
m cos m	

r1
k+1 �

i=0

�

�1,m,k
�2i� �, m = 0 or 1,

�A5�

where recurrence relations of �1,m,k
�i� are

�1,m,k
�0� = 0, �1,m,k

�1� = �− 1�−mCm,1,k,

�1,m,k
�2i� = �− 1�k−m+1�

l=m

�

R2
2l+1�1,m,l

�2i−1�Cm,l,k,

�1,m,k
�2i+1� = �

l=m

�

�− 1�l−m+1R1
2l+1�1,m,l

�2i� Cm,l,k. �A6�

Consider next the contribution to the velocity field just
from initial disturbances arising from rotating sphere 2 when
sphere 1 is inserted at a standstill nearby. Using the afore-
mentioned procedure, the velocity field exterior to the whole
system in relation to the initial disturbance h2m,0� , which in
the �r2 ,�2 ,	� coordinates is written as

h2m,0��2� =
P1

m cos m	em+2�

r2
2 , m = 0 or 1, �A7�

is obtained below:

h2m� = em+2� �P1
m cos m	

r2
2 + �

k=m

�
R1

2k+1Pk
m cos m	

r1
k+1 �

i=0

�

�2,m,k
�2i+1�

+ �
k=m

�
R2

2k+1Pk
m cos m	

r2
k+1 �

i=0

�

�2,m,k
�2i� �, m = 0 or 1,

�A8�

where

�2,m,k
�0� = 0, �2,m,k

�1� = �− 1�k−m+1Cm,1,k,

�2,m,k
�2i� = �

l=m

�

�− 1�l−m+1R1
2l+1�2,m,l

�2i−1�Cm,l,k,

�2,m,k
�2i+1� = �− 1�k−m+1�

l=m

�

R2
2l+1�2,m,l

�2i� Cm,l,k. �A9�
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